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INTRODUCTION 

The prospect of inter stellar exploration has aroused considerable spec - 
ulation during the last 20 years. The earliest studies of relativistic rocket 
mechanics by Ackeret (Refs. 1 and 2 ) ,  Tsien (Ref. 3),  Bussard (Ref. 4), and others 
made two implicit assumptions that severely limit the performance of the vehicles 
considered. They assumed that the nuclear-energy rockets a r e  limited to a single 
stage and that the available energy corresponds to a fixed fraction of the f i n a l  
vehicle mass. The latter assumption apparently arose from the thought that spent 
nuclear fuel would either be retained on board o r  dumped, rather than exhausted 
at high velocity. These assumptions a r e  neither necessary nor desirable. 

9 . 
More recently, interstellar travel has been considered by Sanger (Ref. 5), 

Stuhlinger (Ref. 6) , and von Hoerner (Ref. 7). 
available energy was a function of the propellant mass rather than the f ina l  vehicle 
mass; however, they did not consider staging the vehicles as is done with chemical 
rockets. They concluded, therefore, that interstellar travel using either fission 
or  fusion nuclear reactions as an energy source is impossible because of funda- 
mental limitations on the amount of available energy and that the photon (annihila- 
tion) rocket is necessary. In contradiction, this analysis shows that nuclear 
fission or  fusion rockets can theoretically perform interstellar missions with 
reasonable flight times. 

They realized that the amount of 

The problem of utilizing the full potential of fission o r  fusion nuclear 
reactions in a rocket engine is more difficult. The second portion of this paper 
considers some of the requirements of a fusion propelled vehicle to perform an 
interstellar probe. mission. 

A d/.r#dk 
BASIC EQUATIONS FOR SINGLE-STAGE ROCKET 

The basic equations for single-stage rocket propulsion at relativistic 
velocities were derived by Ackeret and have been utilized by subsequent workers. 
Ackeret's work is inexact, however, in that he considers the rest  mass exhausted 
to equal the rest  mass of fuel consumed. More exactly, the rest  m a s s  of fuel 
consumed i s  

Mf ex 
M t 

Mf 

where M = rest  mass exhausted and M = rest  m a s s  of fuel converted to 
kinetic energy. 

ex f 
The initial rest  mass of the vehicle is 

Mo = Mf + Mb.0. 

where i ~ $ . ~  is the rest  mass of the vehicle a t  burnout. 



Let 

Mb.0. 
Mf 

x =  (3) 

Then 

The stage mass ratio is 

6 Z  l + Y  
%.O. Y 

This i s  simply the result obtained with a chemical propulsion system. 

To discuss the exterior energetics of the vehicle, a coordinate system 
fixed in space and a system relative to the vehicle may be used (Refs. 4, 5, and 6) .  
By employing conservation of momentum, mass, and energy, and the Lorentz 
addition of velocities, Ackeret showed that the final vehicle velocity is given by 

4 -  

A relationship between the exhaust velocity and the fraction of fuel con- 
verted to energy gives the desired form for the final-velocity. This is given by 
Sanger, Huth (Ref. 8)  and Spencer (Ref. 9) 

BASIC EQUATIONS FOR MULTISTAGE ROCKET 
The kinematics of multistage relativistic rockets have been treated only 

by Subotowicz (Ref. IO); however, he did not examine energy requirements. As 
shown in Ref. 10, the burnout velocity u for the nth stage is given by 

n 

2w. c n 
n 6 J/  - 1  

U n j=1 j 

C 2w c 
- =  

6 .  j’ + 1 
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As in the classical case (Ref. lo) ,  optimum staging occurs for equal step mass 
ratios or equal step burnout fractions if  each step has the same exhaust velocity. 
Then Eq. (8) reduces to 

where w/c is given in Eq. (7). Then 

U lim n 
n + a  C 

- -  - I  

. 

for a fixed step mass ratio. Thus, if enough stages a r e  utilized, regardless of the 
exhaust velocity or  mass ratio per stage, it is theoretically possible to attain a 
f ina l  velocity near that of light. 

Another important aspect in the feasibility of interstellar travel is the 
final payload mass which can be delivered by a particular vehicle. Consider an 
n-stage vehicle with stage burnout rest  mass (XM ). and stage structural or dead 
rest  mass ( p  Mf ) j .  Then the payload m a s s  of the jih stage 

f 

the initial mass of the ( j t l  )th stage. 

Generalizing Eq. (4) 

Successive use of Equations (11) and (12) produces the overall payload to initial 
weight relation 

M =  
P MO 1 

Since the step fractions 8. and the stage fractions X .  for optimum staging 
should be the same for all stages, JEq.  (13) reduces to J 



It may be of interest to determine the maximum vehicle burnout velocity 
for a given dead-weight fraction f l  and desired over-all payload fraction a. 
Algebraic solution for X from Eq. (14) yields 

Substituting in Eq. (5 )  g' ive s 

and from Eq. (9) 
\ 

, . 2 nw/c 

U 
n 

C 

Using Eq. (7). the final burnout velocity of the n-stage vehicle in terms 
of over-all payload fraction, deadweight fraction, and fraction of mass converted 
to energy, is 

+ 1  

Figure 1 is a plot showing the over-all mass ratio required versus energy fraction 
Q for various final vehicle velocity ratios u /c. The over-all mass ratio is given 
bY 

n 
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Fig. 1 .  Over-all m a s s  ratio required versus energy traction for various /roc. 
tions of ligbt velocity 

EXAMPLES OF VELOCITIES AND TRANSIT TIMES 

Following are some examples of velocities and transit times which may 
be attainable. The fraction of mass converted to energy by uranium fission is 
about 7 x lom4; by deuterium fusion, 4 x 10-3. Table 1, obtained from Fig. 1, shows 
the over-all mass ratio Anecessary to reach various velocities u /c for a fission 
rocket with f = 7 x 10 
rocket with an energy conversion fraction Q = 4 x 10-1. If deceleration at the 
destination is required, the mass ratios must be squared; for a two-way t r ip  with 

-4 n . Table 2 shows the necessar m a s s  ratio for a fusion 
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Table 1. M a s s  ratios required for fission rockets, c = 7 x 

Required over-all mass ratio A 
Fraction of 

light velocity One-way trip, One -way trip, Two -way trip, 
UJC without deceleration with deceleration with deceleration 

4 

9 

3.8 x 10 

2.3 x 10 

2 1 

2 4 

2.0 x 10 0.1 1 . 4 ~  10 

0.2 2.2 x 10 4.8 x 10 

- - -  7 1.7 x 10 3 0.3 4.1 x 10 

-3 Table 2. Mass ratios required for fusion rockets, c = 4 x 10 

Required over-all mass ratio A 
Fraction of 

light velocity One -way trip, One -way trip, Two -way trip, 
un/c without deceleration with deceleration with deceleration 

1 

3 

0.1 3.0 x loo 9.0 x loo 8.1 x 10 

6.2 x 10 1 0.2 8.9 x loo 7.8 x 10 

0.3 

0.4 

6 

8 

1.1 x 10 

1.5 x 10 

3 

4 

1.1 x 10 

1.2 x 10 

1 

2 

3.3 x 10 

1.1 x 10 

- - -  5 

6 

8 

1.9 x 10 

5.2 x 10 

2.6 x 10 

2 

3 

4 

0.5 4.4x 10 

0.6 2.3 x 10 

0.7 1.6 x 10 

- - -  
- - -  

0.8 

0.9 

6 

7 

2.1 x 10 

1.4 x 10 

a 
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deceleration at each end, the m a s s  ratios must be raised to the fourth power. 
These values a re  also shown in the tables. 

3 6 Mass  ratios of 10 to 10 seem quite feasible in principle. For un- 
manned probes, one-way trips without deceleration may well be adequate. 
Feasible velocity ratios corresponding to the mass ratios mentioned above 
a re  then 0.3 to 0.5 for uranium fission and 0.6 to 0.8 for deuterium fusion. 
corresponding travel times depend on the acceleration used. If approximately 
1 -g acceleration could be achieved, relativistic velocities would be reached 
within a few months and the spacecraft could then coast to its destination at the 
velocity indicated above. To reach Alpha Centauri at 4.3 light years, the transit 
times would be 9 to 14 years with a fission rocket and 6 to 7 years with a fusion 
rocket. 

The 

Figures 2 to 4 show the attainable vehicle burnout velocity as a function 
of the number of stages for payload ratios of 10-1, 10-3, and 10-5 for a fusion 
rocket with c = 4 x 10-3. An interesting feature of these curves is the fact that.a 
five-stage vehicle attains nearly the maximum possible velocity increment for a 
particular payload fraction. 

Fig. 2. Fractions 01 ligbt velocity attainable for a deuterium fusion rocket 
versus number of stages for various dead-weigbt fractions (payload 
fraction=10-1) 



Fig. 3. Frnctioas of ligbt adocity attainable for a deuteri- fusion rocket 
uersms nuder of stages for prious deadweigbt fkctions (payload 
fnrctim=70-3) 

* 

NUMBER O f  STlSES L) 

Fig. 4. Fractions of trgbt velocity attninoble lor a dCPlteriylr fusio~ rocket 
versus nu& of stages for vrrrious &ad-weigbt factions (payload 
frocfim=10-5) 
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Figure 5 displays the effect of the dead-weight fraction fi  for a five-stage 
fusion rocket at various payload ratios. The relatively small effect of the dead- 
weight fraction upon performance is a very significant feature in the design of this 
type of system. It indicates that a strong effort should be made to obtain 100% 
burnup even at the cost of additional structural weight. 

OVER-ALL PAYLOAD FRACTION e 

Fig. 5. Fractions of ligbt velocity attainable for a five-stage deuterium fusion 
rocket versus over-all payload fractions for various dead-weigbt 
fractions 

LIMITATIONS ON TRANSIT FOR A FUSION ROCKET VEHICLE 

In general, the amount of fuel which can be utilized in a nuclear reaction 
is less than the theoretical limit. 
a number less than or equal to unity. The equation for the exhaust velocity of a 
particular stage can then be generalized to be 

This is the so-called burnup fraction which is 

1 /2 
w = c [ c b ( 2 - c b ]  

In order to determine the effect of burnup on system performance, we 
recall that for optimum staging, (Eq. 9), 

Figure 6 shows the performance of a fusion vehicle with an acceleration 
of one g per stage, and a stage mass ratio of 10. It should be noted that unless 
burnups of greater than 1% can be achieved, there is little chance of the fusion 
vehicle performing interstellar missions to five light years with flight times less 
than 50 years. 



Fig. 6. Efject of iscomplete bvntyp on tbe perfomance of fusion rocket uebicle 

GENERAL CHARACTERtSTICS OF A FUSION ENGINE 

Figure 7 presents a schematic of a typical fusion engine. The basic - components of the system a r e  the fusion plasma, theHsuperconducting coils, the 
structural vessels (including insulation), the refrigeration cycle, and waste heat 
radiators (not shown). A separate refrigeration system would be necessary to 
cool the superconducting coils from that uqed to cool the structure. For purposes 
of discussion, the heat load to the coils was neglected, and all  energy escaping 
the plasma was assumed to be absorbed in the structure. 

Now, the thrust of the engine is simply 

F = m  w 
ex 

and the required fusion exhaust power is 

The total power output from the fusion reactor is 

P = P  
ex 

1 - ( r + a )  
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where y is the fractional power carried by the neutrons and Q is the fractional 
power lost from the fuel due to bremsstrahlung and cyclotron radiation. The 
power which i s  absorbed in the engine walls is then 

I 
TO RADIATOR I 

FROM RADlATOll t I 

INSULATION 

+ I 
1 RERIGERATION 1 

CYCLE 2 

Fig. 7 .  Scbernatic o/ a fusion engine 

3 As pointed out in Ref. 11, the D - He reaction is of particular interest 
for rocket propulsion since the products a r e  all charged particles, and thus, can 
be trapped by the external magnetic field. Now consider the competing reactions 
in such an engine (Ref. 12), 

He + H  (26) 
3 

D + H e  
3.6 Mev 14.7 Mev 

50% yield 
of each s5 

(27) D + D  b H e  + n  
0.82 MeV 2.45 Mev I 

I (28) 
D + D  ,T + H  

1.01 Mev 3.02 MeV 

(29) 
D + T  * H e  + n  

3.5 MeV 14.1 MeV 



If we neglect reaction (29), the fractional energy release which is 
imgarted to the neutrons can be estimated. Let y represent the fuel fraction of 
He and then (1 -y ) is the fuel fraction of D. Define the fraction of power carried 
by the neutrons as 

ne P 
y s -  

pt 

Then, 

where QV determines the reaction rate for a Maxwellian velocity distribution. 

The fractional energy lost by bremsstrahlung and cyclotron radiation, , 
is defined as 

The equation for (Ref. 17) is %r 

2 '1/2 5.35 x N~ m1 zI2 + N~ z2 T~ 
- (33) - abr - 2.93 x N1 N2 ( 0 v )12 

3 Rearranging and using the definitions of the He and D fractions given 
above 

The fractional power going into cyclotron radiation (Ref. 13) is approxi- 
mately 

C 
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Due to self absorption of the cyclotron radiation in the plasma and 
reflection from the chamber walls (if properly designed) the fractional power lost 
through this mode may be reduced. In the region of interest for these studies, 
the fractional energy lost .is approximately 1% of 8 thus 

C 

-2 
e C  

01 = 10 
C 

3 Figure 8 shows the fractional power entering the wall versus He 
fraction in the fuel for various ion temperatures. In all cases an ion to electron 
temperature ratio of 2 is assumed. There appears to be an optimum operating 
temperature of 100-200 kev in the region from 0.5 to 0.7 He3 fuel fraction. It 
should be noted, however, that the minimum fractional energy escaping the fuel 
is 20%. This simply means. that 20% of the generated energy must be dumped by 
a thermal radiator. A similar problem has been well known to designers of 
gaseous fission power plants (Ref. 14). 

1 .o 
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/ 

Ti - la ,  kr 

0 

0.4 0.6 0.8 1 .o 
b3 FUEL FRACTION, y ,  

Fig. 8. Fractional energy loss from H e 3  -D plasma versus fuel lraction of H e 3  
at various plasma temperatures 

The remaining equations which a re  necessary to determine the per- 
formance of the system will now be considered. The rest  mass of fuel exhausted 
is generalized to 

= &I ( l - b € )  
ex f (37) 
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and the r e s t  mass of fuel burned i s  

(mf)b  = b m  f 

But this is governed by the reaction rate in the chamber. Then, 
neglecting the DD and DT contributions, 

where V is the volume of the fuel. 

The thrust is given by 

f 

If the engine thrust and size are specified (along with the reaction 
temperature), the required fuel concentration may then be determined from 
Eq. (40). This, in turn, sets the required magnetic field for confinement. Under 
optimum conditions, the confining magnetic field strength is simply 

REFLECTION OF ENGINE CONSTRAINTS ON VEHICLE PERFORMANCE 

In order to assess the potential of an actual vehicle, some estimate must 
be made of the major system weights. In this analysis, the weight of the engine 
chamber and waste heat radiator are considered. In this analysis, the engine 
structure is assumed to be tungsten. 
is a function of temperature, so also is the 

Since the to weight ratio of tungsten 
structure. The strength 

to weight ratio for tungsten is given in Ea. (42). 

-11 0.6 p / s  = 7.45 x 10 
S 

Due to the fact that the coolant must be heated from its temperature 
the amount of heat 

Trad* leaving the structure T to some radiating temperature, 
to be rejected by the radiator is also a functioning of T . This may be seen by- 
considering a simple refrigeration cycle where 

8 

S 

- Trad 
Prad - ’ q ( Ts - ” ) Pabs + Pabs (43) 
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For  purposes of discussion, we assume an  efficiency of the recrigeration 
system, of 0.3. Then, 

(3.3 Trad .- 2.3 T 
S - 

S 
Prad - Pabs T 

(44) 

By extrapolating the results of Ref. 15, the weight of a belt type radiator 
is given by 

Prad 1.25 x 10'' 
- - 

Wrad 9 
rad 

(45) 

It is obvious that we wish to operate the belt at as high a temperature, 
as possible. This temperature is then assumed to be 250O0K. Combining 

Trad' 
Eq. (44) and (45), the weight of the radiator is 

4 
1 . 0 6 ~  10 - - -2.94 Pabs 

abs 
S 

wrad T 

The weight of the chamber structure is 

S S R3 B2 (47) 
w = -  

6 
o r  for a diameter of 10 m and an  l /d of 2 (at a thrust level of 10 lbs.) 

vf 

u 

-5 g2 ( w = 2 . 0 5 ~  10 .) T o.6 
8 15.7 x 10 S 

By combining Eqs. (46) and (48), it is obvious that there is an optimum 
chamber coolant temperature, T . Then 

S 

-5 2 1.06 x 10' Pabs 
+ 1 . 2 3 ~ 1 0  B X dWT 

dTs 
- =  0 = - 

l? 
S 

-0.4 ( 15:fx Ts 



After rearranging ahd solving for T , the optimum structural temperature 
S is 

0.625 T =[ l:ix lov:: 8 d 
S 

15.7 x 10 

The minimum weight can then be determined by substituting this value 
o f T  into 

S 

0.6 
S 

-5 2 vf 
8 (51) 

+ 2 . 0 5 ~  10 B 
15.7 x 10 

wT =( 1.06;IO 4 

S 

Although all other system weights a r e  neglected, this a t  least provides a basis 
from.which the vehicle performance can be estimated. 

In order to obtain the required vehicle characteristics, the gross payload 
necessary for an interstellar mission is estimated to be 10,000 lbs. The principal 
portion of this weight is necessary to provide telecommunications capability. 
Using X-band communication to a 200' terrestrial  dish (Ref. 16), an information 
rate of 1 bit/min requires a 1 Mwe power transmitter at a distance of 5-10' light 
years. The auxiliary powerplant necessary to provide this power will probably 
weigh on the order of 2000 - 5000 lbs. This weight is consistent with the payload 
weight of 10,000 lbs. that has been assumed. 

Figure 9 presents the flight time of a typical 5-stage fusion vehicle to 
deliver a 10,000 lb. gross payload to a five light-year.distance. Notice that the 
required flight time is substantially longer than that shown previously since the 
dead weights of the chamber structure and radiator decrease the achievable stage 
mass ratio. The minimum flight time for a particular dead weight fraction per 
stage occurs with continuous propulsion and occurs with a burnup fraction of 0.15 
in this case. Comparable results a r e  obtained for ather dead weight fractions. 
Increasing the initial weight of the vehicle also does not significantly decrease 
the required flight time. 

Also shown is the required propulsion time to perform this mission. 
The propulsion time becomes longer with increasing burnup fraction, simply 
because the higher specific impulse of the engine produces lower thrust and thus 
vehicle acceleration a t  the same reactor 
for a burnup fraction of 

wer level. The initial acceleration 
is 3.7 x 1 0 - 5 ' s  and a t  b = 0.15, it is 1.3 x IOe3 g's. 
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Fig. 9. Transit time to a 5 ligbt year star witb a 5 stage fusion vebicle 

Figure 10 graphically demonstrates the engineering problems associated 
with the development of a system such as this. Confining magnetic field strengths 
from 200,000 to 300,000 gauss a r e  required, even with the assumption of optimum 
confinement conditions. Finally, the power which must be dissipated in the ra- 
diator of the first stage is 40,000 - 50,000 M w. A typical radiator size at these 
power levels would be 1 square mile radiating from both sides. Thus from an  
engineering standpoint, some method to either decrease power losses or  mini- 
mize the energy absorbed in the chamber walls is necessary in order that this 
system be feasible for interstellar missions. 
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Fig. 10. Magnetic field strengtb a d  power absorbed in tbe structun versus 
fraction for a fusion engine 

NOMENCLATURE 

B magnetic field strength, gauss 

b fuel burnup fraction 

C velocity of light = 3 x 10 cm/sec 

F engine thrust, dynes 

g 

I specific impulse, sec 

j stage number 

k Boltzmann constant = 1.38 x erg \OK atom 

l/d length to diameter ratio 

M rest mass, gm 

nl molecular weight, gm/mole 

m 

10 

2 acceleration of gravity .= 980 cm/sec 

rest mass flow rate, gm/sec 
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DISCUSSION 

M R .  LaROCCA (Propulsion Consultant, General Electric Company): 
I would like to know if you a r e  employing relativistic mechanics and the time you 
are giving a r e  vehicle "proper-times". Also: Is the vehicle arriving there with 
a velocity, let's say, 0.6 of the light velocity, o r  a r e  you decelerating the vehicle 
when you arrive at the star configurations? 

MR. SPENCER: Yes, we did use relativistic mechanics but as you can 
see, when you only talk about three-tenths the velocity of light, both time dilation 
and distance is very similar to the same old Newtonian mechanics. When you get 
up to six-tenths the velocity of light, this is a significant factor and it was taken 
into account in the equations. To your second question, most of these a r e  fly-by 
missions then one would simply accelerate until you got to that velocity then 
coast the rest  of the way. Well, a rule of thumb is that one G for one year will 
almost get up to the velocity of light. So you can see that when we are talking 
about six-tenths the velocity of light, if  we accelerate a t  one G, the propulsion 
time would be less than a year. If you want to do an experiment which would 
require you to remain in the vicinity of that particular star, then you would have 
to decelerate perhaps, but we a re  talking here about probe missions, ,$ly-by 
missions, simiwr to the Mariner. 

. 

. 

CONCLUDING REMARKS 

DR. SLAWSKY: I should like to take this opportunity to thank the speakers 
and the chairmen. This meeting would not have been what it is i f  it 

Second, I would like to thank the General Electric 
job. They had support from the office of Aerospace m 

everyone worked on plans and arrangements for this symposium. 

Finally, I would like to take this opportunity to let you know that the guid- 
ing spirit in our venture this year was Colonel Paul Atkinson. Though Colonel 
Atkinson is out of our office, he still keeps a very watchful eye over what we a re  
doing. 

This symposium will be very hard to beat. I thank you all very much. 

. . . Whereupon at 12:55 p.m. the symposium adjourned . . . . . 


